Log Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant

Presented by Alex Albors Juez and Rohan Mukherjee

CSE 521, University of Washington

December 14th, 2023

Table of contents

1. [Motivation](#page-2-0)

[Counting bases of Matroids](#page-2-0)

2. [Preliminaries](#page-6-0)

[Simplicial Complexes](#page-6-0) [Log-concave polynomials](#page-15-0) [Markov Chains and Random Walks](#page-17-0)

3. [Walks on Simplicial Complexes](#page-19-0)

[Upper and lower walks](#page-19-0)

[0-local-spectral-expanders](#page-22-0)

λ ∗ (*P* ∧ λ_d^{\wedge}) [=](#page-22-0) $\lambda^*(P_{d-1}^{\vee})$

- 4. [From log-concavity to Local Spectral Expanders](#page-26-0) [Strong Log-Concavity implies 0-local-spectral-expander](#page-26-0)
- 5. [Putting everything together: Proof of Theorem 1.1](#page-30-0)
- 6. [References](#page-33-0)

Matroids

A *matroid M* is a pair $M = (X, I)$ where X is a finite set and $I \subseteq 2^X$ so that the following holds:

- (i) Non-emptyness: $\emptyset \in \mathcal{I}$
- (ii) Monotonicity: If $Y \in \mathcal{I}$ and $Z \subseteq Y$ then $Z \in \mathcal{I}$.
- (iii) Exchange property: If $Y, Z \in I$ and $|Y| < |Z|$, then for some *x* ∈ *Z**Y* we have $Y \cup \{x\}$ ∈ *I*

Definition (basis)

Let $M = (X, I)$ be a matroid. A maximal independent set $B \in I$ is called a basis of *X*. All basis elements have the same size, and their size is called the rank of the matroid.

Example: The Acyclic subsets of a graph (forests) form a matroid, called a graphic matroid.

Bases exchange walk

Procedure:

- 1. Start with a basis element *B*.
- 2. Drop a random element *i* from *B*. Pick *j* uniformly at random from $\{1, \ldots, n\}$, and try adding it to $B\setminus\{i\}$. Do it until we can.
- 3. Repeat step 2.

Figure 1: Graph C₄ corresponding to a rank 3 graphic matroid

History

- ▶ 30 years ago, Mihail and Vazirani conjectured that the bases exchange walk mixes in polynomial time.
- ▶ Polynomial mixing time corresponds to being able to count bases in polynomial time (Approximate sampling and approximate counting are equivalent in this scenario [\[2,](#page-33-1) JVV86]).
- ▶ Barvinok and Samorodnitsky designed a randomized algorithm that gives a $\log(n)^r$ approx. factor for a matroid with n elements and rank *r* [\[4,](#page-33-2) BS07].
- ▶ In Log-concave polynoimals I, Gharan et al. give a deterministic algorithm that returns an *e ^r* approximation factor.[\[3,](#page-33-3) AKOV18]
- \blacktriangleright In this paper, Gharan et al. give a randomized algorithm yielding a $1 \pm \epsilon$ approximation factor in polynomial time.

Main theorem

Theorem (1.1)

Let $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a *d*-homogeneous strongly log concave probability distribution. If P_μ denotes the transition probability matrix of M_u and $X(k)$ denotes the set of size- k subsets of $[n]$ which are contained in some element of supp(μ), then for every $0 \le k \le d - 1$, P_u has at most $|X(k)| \leq {n \choose k}$ eigenvalues of value > $1 - \frac{k+1}{d}$. In particular, *M*_u has spectral gap at least $1/d$, and if $\tau \in \text{supp}(\mu)$ and $0 < \epsilon < 1$, the total variation mixing time of the Markov chain M_u started at τ is at $\textsf{most}\ t_{\tau}(\epsilon) \leq d\log(\frac{1}{\epsilon \mu(\tau)}).$

Simplicial Complexes

Definition

- ▶ A set $X \subseteq 2^{[n]}$ is called a simplicial complex if whenever $\sigma \in X$ and $\tau \subset \sigma$, we have $\tau \in X$.
- ▶ Elements of *X* are called faces, and the dimension of a face $\tau \in X$ is defined as $\dim(\tau) = |\tau|$.
- ▶ A face of dimension 1 is called a vertex, and a face of dimension 2 is called an edge.
- ▶ Define *X*(*k*) = { τ ∈ *X* | dim(τ) = *k* } to be the collection of degree-*k* faces of *X*.

Examples

Any (undirected) graph $G = (V, E)$ is an example of a simplicial complex.

Figure 2: Example of a simplicial complex

Examples (contd.)

Figure 3: Example of a simplicial complex

Definitions contd.

- ▶ A simplicial complex *X* is pure if all maximal (w.r.t. inclusion) faces have the same dimension.
- **►** The link of a face $\tau \in X$ is defined by $X_{\tau} = {\sigma \setminus \tau | \sigma \in X, \tau \subset \sigma}.$ Importantly, if *X* is pure of dimension *d* and $\tau \in X(k)$, then X_{τ} is pure of dimension $d - k$
- ▶ Can equip a weight function $w: X \to \mathbb{R}_{\geq 0}$ to X by assigning a positive weight to each face of *X*. Say a weight function $w: X \to \mathbb{R}_{>0}$ is balanced if for any $\tau \in X$,

$$
w(\tau) = \sum_{\substack{\sigma \in X(k+1) \\ \tau \subset \sigma}} w(\sigma)
$$

 \triangleright Notice that we can equip X with a (balanced) weight function by assigning its maximal faces weights and then assigning weights to the rest of the faces inductively.

Weights contd.

▶ Any (balanced) weight function on *X* induces a weighted graph on the vertices of *X* as follows: the 1-skeleton of *X* is the (weighted) graph $G = (X(1), X(2), w)$ where w has been restricted from *X* to *X*(2). In this case $w(v)$ for $v \in X(1)$ is the weighted degree of *v*.

d-homogeneous polynomials

A polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ is *d*-homogeneous if $p(\lambda x_1, \ldots, \lambda x_n) = \lambda^d p(x_1, \ldots, x_n)$ for every $\lambda \in \mathbb{R}$. Notice in this case that,

$$
\sum_{k=1}^n x_k \partial_k p(x) = d \cdot p(x)
$$

Example. Consider $p(x, y, z) = xyz^2 + x^2yz$. Then,

$$
\sum_{k=1}^{3} x_k \partial_k p(x) = (xyz^2 + 2x^2yz) + (xyz^2 + x^2yz) + (2xyz^2 + x^2yz)
$$

= $4xyz^2 + 4x^2yz$

 $A \cup B \cup A \cap B \cup A \subseteq B \cup A \subseteq B \cup B$

Constructing Simplicial Complexes from Polynomials

From a *d*-homogeneous $p \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_n]$ $p(x) = \sum_{S} c_S x^S$, can construct a (weighted) simplicial complex *X ^p* by doing the following: include a *d*-dimensional face *S* with weight $w(S) = c_S$ and include all subsets of these maximal faces inductively.

Visuals

This polynomial yields the above (weighted) simplex where each tetrahedral face has weight 1:

 $p(x_1, \ldots, x_7) = x_1x_2x_3x_4 + x_3x_5x_6x_7$

Figure 4: Two Tetrahedrons Glued [To](#page-12-0)g[et](#page-14-0)[h](#page-12-0)[er](#page-13-0)

Roadmap

Figure 5: Roadmap

Log-concave polynomial identities

Definition

A polynomial $p \in \mathbb{R}_{\geq 0}[x_1,\ldots,x_n]$ is log-concave if $\log p$ is concave, equivalently if

$$
\nabla^2 \log p = \frac{p \cdot (\nabla p)^2 - (\nabla p)(\nabla p)^T}{p^2}
$$

is NSD. For convience, define $p(x) \equiv 0$ to be log-concave.

Log-concave properties contd.

- ▶ By Cauchy's interlacing theorem, if p is log-concave then $p \cdot (\nabla^2 p)$ has at most one positive eigenvalue at any $x \in \mathbb{R}_{>0}^n$.
- \triangleright Since p has nonnegative coefficients, log-concavity is equivalent to $\nabla^2 p \leq \frac{(\nabla p)(\nabla p)^T}{p}$ $\frac{(\nabla p)^i}{p}$, so in this case $\nabla^2 p$ has at most 1 one positive eigenvalue.
- \blacktriangleright Turns out converse is true too: if p is a degree d-homogeneous polynomial in $\mathbb{R}[x_1,\ldots,x_n],$ and $(\nabla^2 p)(x)$ has at most one positive eigenvalue for all $x \in \mathbb{R}^n_{>0}$, then p is log-concave.

Definition

A polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ is strongly log concave if for all $k \geq 0$ and all $\alpha \in [n]^k$, we have $\partial^\alpha p$ is log-concave (i.e., all sequences of partials are log-concave).

Markov Chains and Random Walks

 $▶$ A Markov Chain is a triple $(Ω, P, π)$ where $Ω$ denotes a finite state space, $P \in \mathbb{R}_{\geq 0}^{\Omega \times \Omega}$ is a transition probability matrix. That is,

$$
P(i, j) = P_{ij} = \mathbb{P}(X_{t+1} = j \mid X_t = i)
$$

It follows that the matrix is stochastic, such that $P_1 = 1$. Finally, $\pi \in \mathbb{R}_{\geq 0}^{\Omega}$ denotes the stationary distribution of the chain $(\pi P = \pi)$. ▶ The Markov Chain (Ω, *P*, π) is reversible if

$$
\pi(\tau)P(\tau,\sigma)=\pi(\sigma)P(\sigma,\tau)
$$

for all τ , $\sigma \in \Omega$.

KORKAN KERKER DA

Markov Chains and Random Walks continued

▶ For any reversible Markov chain (Ω, *P*, π), the largest eigenvalue of *P* is 1 (Perron-Fröbenius Theorem). We let $\lambda^*(P) = \max\{|\lambda_2|, |\lambda_n|\}.$ The spectral gap of the Markov chain is $1 - \lambda^*(P)$.

Theorem (2.9, (DS))

For any reversible irreducible Markov chain (Ω, P, π) , $\epsilon > 0$, and any starting state

$$
t_{\tau}(\epsilon) \le \frac{1}{1 - \lambda^*(P)} \cdot \log\left(\frac{1}{\epsilon \pi(\tau)}\right)
$$

where

$$
t_{\tau}(\epsilon) = \min \left\{ t \in \mathbb{N} \mid \left\| P^t(\tau, \cdot) - \pi \right\|_1 \le \epsilon \right\}
$$

Setting the stage

- ▶ Consider a pure *d*-dimensional complex *X* with a balanced weight function $w: X \to \mathbb{R}_{>0}$.
- \triangleright Going to define a bipartite graph G_k with one side $X(k)$ and the other side $X(k + 1)$. Connect $\tau \in X(k)$ to $\sigma \in X(k + 1)$ with an edge of weight *w*(σ) iff τ ⊂ σ. Consider simple random walk on *G^k* : choose a neighbor proportional to the weight of the edge connecting the two vertices.

Examples

- ▶ One on *X*(*k*) called *P* ∧ χ_k^{\wedge} , where given $\tau \in X(k)$ you take two steps of the walk in G_k to transition to the next *k*-face w.r.t. the P_k^{\wedge} *k* matrix.
- ▶ One on $X(k + 1)$ called P_k^{\vee} \bigvee_{k+1}^{\vee} , where given $\sigma \in X(k+1)$ you take two steps to transition to the next $k + 1$ face w.r.t. P_k^{\vee} *k*+1 .

Figure 6: Bipartite graph *G^k*

Values of the transition matrix

$$
P_k^{\wedge}(\tau, \tau') = \begin{cases} \frac{1}{k+1} & \text{if } \tau = \tau'\\ \frac{w(\tau \cup \tau')}{(k+1)w(\tau)} & \text{if } \tau \cup \tau' = X(k+1)\\ 0, & \text{otherwise} \end{cases}
$$

$$
P_{k+1}^{\vee}(\sigma,\sigma') = \begin{cases} \sum_{\tau \in X(k); \ \tau \subset \sigma} \frac{w(\sigma)}{(k+1)w(\tau)} & \text{if } \sigma = \sigma'\\ \frac{w(\sigma')}{(k+1)w(\sigma \cap \sigma')} & \text{if } \sigma \cap \sigma' = X(k) \\ 0, & \text{otherwise} \end{cases}
$$

Note that both random walks are reversible with the same stationary distribution:

$$
w(\tau)P_k^{\wedge}(\tau,\tau')=w(\tau')P_k^{\wedge}(\tau',\tau) \quad \text{ and } \quad w(\sigma)P_{k+1}^{\vee}(\sigma,\sigma')=w(\sigma')P_{k+1}^{\vee}(\sigma',\sigma)
$$

メロトメ 御 メメ きょくきょうき 2090 22 / 34 Proving $\lambda^*(P_d^{\wedge})$ λ_d^{\wedge}) = $\lambda^*(P_d^{\vee})$ *d*−1)

Fact (Useful)

Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ be arbitrary matrices. Then, non-zero eigenvalues of *AB* are equal to non-zero eigenvalues of *BA* with the same multiplicity.

Lemma (3.1)

For any $1 \leq k \leq d$, P_k^{\wedge} $\frac{\wedge}{k}$ and P_{k}^{\vee} $\frac{1}{k+1}$ are stochastic, self-adjoint w.r.t. the ω -induced inner product, *PSD*, and have the same (with multiplicity) non-zero eigenvalues.

Proving $\lambda^*(P_d^{\wedge})$ λ_d^{\wedge}) = $\lambda^*(P_d^{\vee})$ *d*−1)

Proof.

Since G_k is bipartite, we may write the transition of the random walk on G_k as

$$
P_k = \begin{bmatrix} 0 & P_k^{\downarrow} \\ P_k^{\uparrow} & 0 \end{bmatrix}
$$

Note that *P* ↑ \int_k^{\uparrow} and P_k^{\downarrow} $\frac{\scriptstyle 1}{\scriptstyle k}$ are stochastic matrices. Then we see that

$$
P_k^2 = \begin{bmatrix} P_k^\downarrow P_k^\uparrow & \\ & P_k^\uparrow P_k^\downarrow \end{bmatrix}
$$

It is easy to see P_k^2 is PSD and stochastic. But now we note that *P* ∧ \hat{k} ^{$\in P_k^{\downarrow}$} $_{k}^{\downarrow}P_{k}^{\uparrow}$ $\int\limits_k^{\uparrow}$ and P_{k}^{\vee} $\sum_{k+1}^{V} = P_k^{\uparrow}$ ${}^{\uparrow}_{k}P^{\downarrow}_{k}$ $\frac{1}{k}$ and we're done.

Looking at *P* ∧ 1

- \blacktriangleright *P*[∧]₁ $\frac{\wedge}{1}$ is the transition probability matrix of the simple (1/2)-lazy random walk on the weighted 1-skeleton of *X* where the weight of each edge $e \in X(2)$ is $w(e)$.
- \triangleright Also consider the non-lazy variant of this random walk, given by the transition matrix $\widetilde{P}_{1}^{\wedge}$ $\hat{P}_1^{\wedge} = 2(P_1^{\wedge})$ $\frac{1}{1} - I/2$
- **►** Similarly, for any face $\tau \in X(k)$, we define the upper random walk on the faces of the link X_{τ} . Specifically, let P_{τ}^{\wedge} $\int_{\tau,1}^{\wedge}$ denote the transition matrix of the upper walk, as above, on the 1-dimensional faces of X_{τ} , and $\widetilde{P}_{\tau}^{\wedge}$ $\bar{r}_{\tau,1}^{\wedge} = 2(P_{\tau}^{\wedge})$ $T_{\tau,1}^{\wedge} - I/2$) be the transition matrix for the non-lazy version.

Definition (Local Spectral Expanders, KO18)

For $\lambda > 0$, a pure *d*-dimensional weighted complex (X, w) is a λ -local-spectral-expander if for every $0 \le k < d-1$, and for every $\tau \in X(k)$, we have $\lambda_2(\widetilde{P}_{\tau_k}^\wedge)$ $\lambda_{\tau,1}^{\lambda}) \leq \lambda.$

Theorem 3.3

Theorem

Let (*X*, *w*) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \leq k < d$. Then for all $-1 \leq i \leq k$, P_k^{\wedge} *k* has at most $|X(i)| \leq {n \choose i}$ eigenvalues of value > $1 - \frac{i+1}{k+1}$, where (by convention) $X(-1) = \emptyset$ and $\binom{n}{-1} = 0$. In particular, the second largest eigenvalue of *P* ∧ $\frac{\wedge}{k}$ is at most $\frac{k}{k+1}$.

Lemma

P ∧ $\frac{k}{k} \leq \frac{k}{k+1} P_k^{\vee}$ $\frac{1}{k}$ + $\frac{1}{k+1}$ *I* for all $0 \leq k < d$.

From log-concavity to Local Spectral Expanders

Theorem (Proposition 4.1)

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a multiaffine homogeneous polynomial with nonnegative coefficients. If p is strongly log-concave, then (X^p,w) is a 0-local-spectral-expander, where $w(S) = c_S$ for every maximal face $S \in X^p$

 \blacktriangleright Let *p*_τ = ($\prod_{i \in \tau} \partial_i$) *p*

Lemma (4.2)

For any $0 \le k \le d$, and any simplex $\tau \in X^p(k)$, $w(\tau) = (d - k)! p_\tau(\mathbf{1})$.

From log-concavity to Local Spectral Expanders

Lemma (Lemma 4.2)

For any $0 \le k \le d$, and any simplex $\tau \in X^p(k)$, $w(\tau) = (d - k)! p_\tau(\mathbf{1})$.

Proof of Lemma.

Induction on $d - k$. If $\dim(\tau) = d$, then $p_{\tau} = c_{\tau}$, and done. So suppose statement holds for $\sigma \in X^p(k+1)$ and fix simplex $\tau \in X^p(k)$. Then,

$$
w(\tau) = \sum_{\substack{\sigma \in X^p(k+1) \\ \tau \subset \sigma}} w(\sigma) = \sum_{i \in X^p_{\tau}(1)} w(\tau \cup \{i\})
$$

Since $\partial_i p_\tau = 0$ for $i \notin X_\tau^p(1)$, we have

$$
w(\tau) = (d-k-1)!\sum_{i \in X_{\tau}^p(1)}p_{\tau \cup \{i\}}(\mathbf{1}) = (d-k-1)!\sum_{i=1}^n \partial_i p_{\tau}(\mathbf{1}) = (d-k)!p_{\tau}(\mathbf{1})
$$

Where the last equality holds by Euler's identity. □

Proof of Proposition 4.1

Since *p* is strongly log-concave, ∇ ²*p*(**1**) has at most one positive eigenvalue. Let

$$
\tilde{\nabla}^2 p = \frac{1}{d-k-1} (\text{diag}(\nabla p))^{-1} \nabla^2 p(\mathbf{1})
$$

Claim: $\tilde{\nabla}^2 p = \tilde{P}_{\tau,1}^{\wedge}$. Note that

$$
\tilde{P}_{\tau,1}^{\wedge}(i,j) = \frac{w_{\tau}(\{i,j\})}{w_{\tau}(\{i\})} = \frac{w(\tau \cup \{i,j\})}{w(\tau \cup \{i\})}
$$

While,

$$
(\tilde{\nabla}^2 p)(i,j) = \frac{(\partial_i \partial_j p)(\mathbf{1})}{(d-k-1)(\partial_i p)(\mathbf{1})}
$$

By lemma, equal.

KOD KAD KED KED E VAN

Proof contd.

Since p has nonnegative coefficients, the vector $(\nabla p)(\mathbf{1})$ has nonnegative entries which implies $diag(\nabla p)(1) \geq 0$. Fact: if $B \geq 0$ and *A* has (at most) *k* positive eigenvalues then *BA* has at most *k* positive eigenvalues. Since (∇ ²*p*)(**1**) has at most 1 positive eigenvalue, ∇˜ ²*p* has at most 1 positive eigenvalue by the fact. Thus, $\tilde{\nabla}^2 p = \tilde{P}^\wedge_{\tau,1}$ has at most one positive eigenvalue, so $\lambda_2(\tilde{P}_{\tau,1}^{\wedge}) \leq 0$.

Generating polynomial of μ and \mathcal{M}_{μ}

► Let μ : $2^{[n]}$ → $\mathbb{R}_{\geq 0}$ be a probability distribution. Assing a multiaffine polynomial with variables $x_1 \ldots, x_n$ to μ :

$$
g_{\mu}(x) = \sum_{S \subset [n]} \mu(S) \cdot \prod_{i \in S} x_i
$$

- ▶ Say μ is *d*-homogeneous if g_{μ} is *d*-homogeneous, and (strongly) log-concave if g_u is.
- \blacktriangleright We can define a random walk \mathcal{M}_{μ} by the following: We take the state space of M_u to be the support of μ , namely $\text{supp}(\mu) = \{S \subseteq [n] | \mu(S) \neq 0\}.$ For $\tau \in \text{supp}(\mu)$, first we drop an element $i \in \tau$, chosen uniformly at random from τ . Then, among all sets $\sigma \supseteq \tau \setminus \{i\}$ in the support of μ , we choose one with probability proportional to $\mu(\sigma)$.

Proof of Theorem 1.1

Theorem (1.1)

Let $\mu: 2^{[n]} \to \mathbb{R}_{>0}$ be a *d*-homogeneous strongly log concave probability distribution. If *P*^µ denotes the transition probability matrix of *M*^µ and *X*(*k*) denotes the set of size-*k* subsets of $[n]$ which are contained in some element of $supp(\mu)$, then for every $0 \le k \le d-1$, P_μ has at most $|X(k)| \le {n \choose k}$ eigenvalues of value > 1 − $\frac{k+1}{d}$. In particular, *M*_µ has spectral gap at least $1/d$, and if $\tau \in \text{supp}(\mu)$ and $0 < \epsilon < 1$, the total variation mixing time of the Markov chain M_μ started at τ is at most $t_\tau(\epsilon) \leq d\log(\frac{1}{\epsilon\mu(t)})$.

Proof.

Let μ be a *d*-homogeneous strongly log-concave distribution, and let P_{μ} be the transition probability matrix of the chain *M*µ. By Theorem 2.9, it is enough to show that $\lambda^*(P_\mu) \leq 1 - \frac{1}{d}$. Observe that the chain M_μ is exactly the same as the chain P_d^\vee for the simplicial complex $X^{g\mu}$ defined above. Therefore, $\lambda^*(P_\mu) = \lambda^*(P_d^{\vee}) = \lambda^*(P_{d-1}^{\wedge})$, where the last equality follows by Lemma 3.1. Since g_μ is strongly log-concave, by Proposition 4.1, $X^{g\mu}$ is a 0-local-spectral-expander. Therefore, by Theorem 3.3, $\lambda^*(P_{d-1}^{\wedge}) \leq 1 - \frac{1}{(d-1)+1} = 1 - \frac{1}{d}$. <mark>□</mark>

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Roadmap

Figure 7: Roadmap

References

螶

Anari, N., Liu, K., Gharan, S. O., Vinzant, C. (2019, June). Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (pp. 1-16).

F.

Mark Jerrum, Leslie Valiant, and Vijay Vazirani. "Random Generation of Combinatorial Structures from a Uniform Distribution". In: Theoretical Computer Science 43 (1986), pp. 169–188.

Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS. to appear. 2018.

Alexander Barvinok and Alex Samorodnitsky. "Random weighting, asymptotic counting, and inverse isoperimetry". In: Israel Journal of Mathematics 158.1 (Mar. 2007), pp. 159–191. issn: 1565-8511.