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Matroids

A matroid M is a pair M = (X,I) where X is a finite set and I ⊆ 2X so
that the following holds:

(i) Non-emptyness: ∅ ∈ I

(ii) Monotonicity: If Y ∈ I and Z ⊆ Y then Z ∈ I.

(iii) Exchange property: If Y,Z ∈ I and |Y| < |Z|, then for some
x ∈ Z\Y we have Y ∪ {x} ∈ I

Definition (basis)
Let M = (X,I) be a matroid. A maximal independent set B ∈ I is
called a basis of X. All basis elements have the same size, and their
size is called the rank of the matroid.

Example: The Acyclic subsets of a graph (forests) form a matroid,
called a graphic matroid.
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Bases exchange walk
Procedure:

1. Start with a basis element B.

2. Drop a random element i from B. Pick j uniformly at random from
{1, . . . ,n}, and try adding it to B\{i}. Do it until we can.

3. Repeat step 2.

1

2

3

4

Figure 1: Graph C4 corresponding to a rank 3 graphic matroid
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History

▶ 30 years ago, Mihail and Vazirani conjectured that the bases
exchange walk mixes in polynomial time.

▶ Polynomial mixing time corresponds to being able to count bases
in polynomial time (Approximate sampling and approximate
counting are equivalent in this scenario [2, JVV86]).

▶ Barvinok and Samorodnitsky designed a randomized algorithm
that gives a log(n)r approx. factor for a matroid with n elements
and rank r [4, BS07].

▶ In Log-concave polynoimals I, Gharan et al. give a deterministic
algorithm that returns an er approximation factor.[3, AKOV18]

▶ In this paper, Gharan et al. give a randomized algorithm yielding
a 1 ± ϵ approximation factor in polynomial time.
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Main theorem

Theorem (1.1)
Let µ : 2[n]

→ R≥0 be a d-homogeneous strongly log concave
probability distribution. If Pµ denotes the transition probability matrix
of Mµ and X(k) denotes the set of size-k subsets of [n] which are
contained in some element of supp(µ), then for every 0 ≤ k ≤ d− 1, Pµ
has at most |X(k)| ≤

(n
k
)

eigenvalues of value > 1 − k+1
d . In particular,

Mµ has spectral gap at least 1/d, and if τ ∈ supp(µ) and 0 < ϵ < 1, the
total variation mixing time of the Markov chain Mµ started at τ is at
most tτ(ϵ) ≤ d log( 1

ϵµ(τ) ).
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Simplicial Complexes

Definition
▶ A set X ⊆ 2[n] is called a simplicial complex if whenever σ ∈ X

and τ ⊂ σ, we have τ ∈ X.

▶ Elements of X are called faces, and the dimension of a face
τ ∈ X is defined as dim(τ) = |τ|.

▶ A face of dimension 1 is called a vertex, and a face of dimension
2 is called an edge.

▶ Define X(k) = { τ ∈ X | dim(τ) = k } to be the collection of
degree-k faces of X.
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Examples
Any (undirected) graph G = (V,E) is an example of a simplicial
complex.

Figure 2: Example of a simplicial complex
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Examples (contd.)

Figure 3: Example of a simplicial complex
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Definitions contd.

▶ A simplicial complex X is pure if all maximal (w.r.t. inclusion) faces have
the same dimension.

▶ The link of a face τ ∈ X is defined by Xτ = { σ \ τ | σ ∈ X, τ ⊂ σ }.
Importantly, if X is pure of dimension d and τ ∈ X(k), then Xτ is pure of
dimension d − k.

▶ Can equip a weight function w : X→ R>0 to X by assigning a positive
weight to each face of X. Say a weight function w : X→ R>0 is balanced
if for any τ ∈ X,

w(τ) =
∑

σ∈X(k+1)
τ⊂σ

w(σ)

▶ Notice that we can equip X with a (balanced) weight function by
assigning its maximal faces weights and then assigning weights to the
rest of the faces inductively.
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Weights contd.

▶ Any (balanced) weight function on X induces a weighted graph
on the vertices of X as follows: the 1-skeleton of X is the
(weighted) graph G = (X(1),X(2),w) where w has been restricted
from X to X(2). In this case w(v) for v ∈ X(1) is the weighted
degree of v.
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d-homogeneous polynomials

A polynomial p ∈ R[x1, . . . , xn] is d-homogeneous if
p(λx1, . . . , λxn) = λdp(x1, . . . , xn) for every λ ∈ R. Notice in this case
that,

n∑
k=1

xk∂kp(x) = d · p(x)

Example. Consider p(x, y, z) = xyz2 + x2yz. Then,

3∑
k=1

xk∂kp(x) = (xyz2 + 2x2yz) + (xyz2 + x2yz) + (2xyz2 + x2yz)

= 4xyz2 + 4x2yz
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Constructing Simplicial Complexes from Polynomials

From a d-homogeneous p ∈ R≥0[x1, . . . , xn] p(x) =
∑

S cSxS, can
construct a (weighted) simplicial complex Xp by doing the following:
include a d-dimensional face S with weight w(S) = cS and include all
subsets of these maximal faces inductively.
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Visuals
This polynomial yields the above (weighted) simplex where each
tetrahedral face has weight 1:

p(x1, . . . , x7) = x1x2x3x4 + x3x5x6x7

Figure 4: Two Tetrahedrons Glued Together
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Roadmap

Figure 5: Roadmap
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Log-concave polynomial identities

Definition
A polynomial p ∈ R≥0[x1, . . . , xn] is log-concave if log p is concave,
equivalently if

∇
2 log p =

p · (∇p)2
− (∇p)(∇p)T

p2

is NSD. For convience, define p(x) ≡ 0 to be log-concave.
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Log-concave properties contd.

▶ By Cauchy’s interlacing theorem, if p is log-concave then p · (∇2p)
has at most one positive eigenvalue at any x ∈ Rn

>0.

▶ Since p has nonnegative coefficients, log-concavity is equivalent
to ∇2p ⪯ (∇p)(∇p)T

p , so in this case ∇2p has at most 1 one positive
eigenvalue.

▶ Turns out converse is true too: if p is a degree d-homogeneous
polynomial in R[x1, . . . , xn], and (∇2p)(x) has at most one positive
eigenvalue for all x ∈ Rn

>0, then p is log-concave.

Definition
A polynomial p ∈ R[x1, . . . , xn] is strongly log concave if for all k ≥ 0
and all α ∈ [n]k, we have ∂αp is log-concave (i.e., all sequences of
partials are log-concave).
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Markov Chains and Random Walks

▶ A Markov Chain is a triple (Ω,P, π) where Ω denotes a finite state
space, P ∈ RΩ×Ω

≥0 is a transition probability matrix. That is,

P(i, j) = Pij = P(Xt+1 = j | Xt = i)

It follows that the matrix is stochastic, such that P 1 = 1. Finally,
π ∈ RΩ

≥0 denotes the stationary distribution of the chain (πP = π).

▶ The Markov Chain (Ω,P, π) is reversible if

π(τ)P(τ, σ) = π(σ)P(σ, τ)

for all τ, σ ∈ Ω.
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Markov Chains and Random Walks continued
▶ For any reversible Markov chain (Ω, P, π), the largest eigenvalue

of P is 1 (Perron-Fröbenius Theorem). We let
λ∗(P) = max{|λ2|, |λn|}. The spectral gap of the Markov chain is
1 − λ∗(P).

Theorem (2.9, (DS))
For any reversible irreducible Markov chain (Ω,P, π), ϵ > 0, and any
starting state

tτ(ϵ) ≤
1

1 − λ∗(P)
· log

(
1
ϵπ(τ)

)
where

tτ(ϵ) = min
{

t ∈N |
∥∥∥Pt(τ, ·) − π

∥∥∥
1
≤ ϵ

}
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Setting the stage

▶ Consider a pure d-dimensional complex X with a balanced
weight function w : X→ R>0.

▶ Going to define a bipartite graph Gk with one side X(k) and the
other side X(k + 1). Connect τ ∈ X(k) to σ ∈ X(k + 1) with an edge
of weight w(σ) iff τ ⊂ σ. Consider simple random walk on Gk:
choose a neighbor proportional to the weight of the edge
connecting the two vertices.
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Examples

▶ One on X(k) called P∧k , where given τ ∈ X(k) you take two steps
of the walk in Gk to transition to the next k-face w.r.t. the P∧k
matrix.

▶ One on X(k + 1) called P∨k+1, where given σ ∈ X(k + 1) you take
two steps to transition to the next k + 1 face w.r.t. P∨k+1.

X(k) X(k + 1)

Figure 6: Bipartite graph Gk
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Values of the transition matrix

P∧k (τ, τ′) =


1

k+1 if τ = τ′

w(τ∪τ′)
(k+1)w(τ) if τ ∪ τ′ = X(k + 1)

0, otherwise

P∨k+1(σ, σ′) =


∑
τ∈X(k); τ⊂σ

w(σ)
(k+1)w(τ) if σ = σ′

w(σ′)
(k+1)w(σ∩σ′) if σ ∩ σ′ = X(k)

0, otherwise

Note that both random walks are reversible with the same stationary
distribution:

w(τ)P∧k (τ, τ′) = w(τ′)P∧k (τ′, τ) and w(σ)P∨k+1(σ, σ′) = w(σ′)P∨k+1(σ′, σ)
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Proving λ∗(P∧d ) = λ∗(P∨d−1)

Fact (Useful)

Let A ∈ Rn×k and B ∈ Rk×n be arbitrary matrices. Then, non-zero
eigenvalues of AB are equal to non-zero eigenvalues of BA with the
same multiplicity.

Lemma (3.1)

For any 1 ≤ k ≤ d, P∧k and P∨k+1 are stochastic, self-adjoint w.r.t. the
ω-induced inner product, PSD, and have the same (with multiplicity)
non-zero eigenvalues.
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Proving λ∗(P∧d ) = λ∗(P∨d−1)

Proof.
Since Gk is bipartite, we may write the transition of the random walk
on Gk as

Pk =

 0 P↓k
P↑k 0


Note that P↑k and P↓k are stochastic matrices. Then we see that

P2
k =

P↓k P↑k
P↑k P↓k


It is easy to see P2

k is PSD and stochastic. But now we note that
P∧k = P↓k P↑k and P∨k+1 = P↑k P↓k and we’re done. □
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Looking at P∧1
▶ P∧1 is the transition probability matrix of the simple (1/2)-lazy

random walk on the weighted 1-skeleton of X where the weight
of each edge e ∈ X(2) is w(e).

▶ Also consider the non-lazy variant of this random walk, given by
the transition matrix P̃∧1 = 2(P∧1 − I/2)

▶ Similarly, for any face τ ∈ X(k), we define the upper random walk
on the faces of the link Xτ. Specifically, let P∧τ,1 denote the
transition matrix of the upper walk, as above, on the
1-dimensional faces of Xτ, and P̃∧τ,1 = 2(P∧τ,1 − I/2) be the
transition matrix for the non-lazy version.

Definition (Local Spectral Expanders, KO18)
For λ > 0, a pure d-dimensional weighted complex (X,w) is a
λ-local-spectral-expander if for every 0 ≤ k < d − 1, and for every
τ ∈ X(k), we have λ2(P̃∧τ,1) ≤ λ.
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Theorem 3.3

Theorem
Let (X,w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 ≤ k < d. Then for all −1 ≤ i ≤ k, P∧k has at most
|X(i)| ≤

(n
i
)

eigenvalues of value > 1 − i+1
k+1 , where (by convention)

X(−1) = ∅ and
( n
−1

)
= 0. In particular, the second largest eigenvalue of

P∧k is at most k
k+1 .

Lemma
P∧k ⪯

k
k+1 P∨k +

1
k+1 I for all 0 ≤ k < d.

26 / 34



From log-concavity to Local Spectral Expanders

Theorem (Proposition 4.1)

Let p ∈ R[x1, . . . , xn] be a multiaffine homogeneous polynomial with
nonnegative coefficients. If p is strongly log-concave, then (Xp,w) is a
0-local-spectral-expander, where w(S) = cS for every maximal face
S ∈ Xp

▶ Let pτ = (
∏

i∈τ ∂i) p

Lemma (4.2)
For any 0 ≤ k ≤ d, and any simplex τ ∈ Xp(k), w(τ) = (d − k)!pτ(1).
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From log-concavity to Local Spectral Expanders

Lemma (Lemma 4.2)
For any 0 ≤ k ≤ d, and any simplex τ ∈ Xp(k), w(τ) = (d − k)!pτ(1).

Proof of Lemma.
Induction on d − k. If dim(τ) = d, then pτ = cτ, and done. So suppose statement holds
for σ ∈ Xp(k + 1) and fix simplex τ ∈ Xp(k). Then,

w(τ) =
∑

σ∈Xp(k+1)
τ⊂σ

w(σ) =
∑

i∈Xp
τ(1)

w(τ ∪ { i })

Since ∂ipτ = 0 for i < Xp
τ(1), we have

w(τ) = (d − k − 1)!
∑

i∈Xp
τ(1)

pτ∪{ i }(1) = (d − k − 1)!
n∑

i=1

∂ipτ(1) = (d − k)!pτ(1)

Where the last equality holds by Euler’s identity. □
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Proof of Proposition 4.1

Since p is strongly log-concave, ∇2p(1) has at most one positive
eigenvalue. Let

∇̃
2p =

1
d − k − 1

(diag(∇p))−1
∇

2p(1)

Claim: ∇̃2p = P̃∧τ,1. Note that

P̃∧τ,1(i, j) =
wτ(

{
i, j

}
)

wτ({ i })
=

w(τ ∪
{

i, j
}
)

w(τ ∪ { i })

While,

(∇̃2p)(i, j) =
(∂i∂jp)(1)

(d − k − 1)(∂ip)(1)

By lemma, equal.
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Proof contd.

Since p has nonnegative coefficients, the vector (∇p)(1) has
nonnegative entries which implies diag(∇p)(1) ⪰ 0. Fact: if B ⪰ 0 and
A has (at most) k positive eigenvalues then BA has at most k positive
eigenvalues. Since (∇2p)(1) has at most 1 positive eigenvalue, ∇̃2p
has at most 1 positive eigenvalue by the fact. Thus, ∇̃2p = P̃∧τ,1 has at
most one positive eigenvalue, so λ2(P̃∧τ,1) ≤ 0. □
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Generating polynomial of µ andMµ

▶ Let µ : 2[n]
→ R≥0 be a probability distribution. Assing a

multiaffine polynomial with variables x1 . . . , xn to µ:

gµ(x) =
∑
S⊂[n]

µ(S) ·
∏
i∈S

xi

▶ Say µ is d-homogeneous if gµ is d-homogeneous, and (strongly)
log-concave if gµ is.

▶ We can define a random walkMµ by the following: We take the
state space of Mµ to be the support of µ, namely
supp(µ) = {S ⊆ [n] |µ(S) , 0}. For τ ∈ supp(µ), first we drop an
element i ∈ τ, chosen uniformly at random from τ. Then, among
all sets σ ⊇ τ \ {i} in the support of µ, we choose one with
probability proportional to µ(σ).
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Proof of Theorem 1.1

Theorem (1.1)
Let µ : 2[n]

→ R≥0 be a d-homogeneous strongly log concave probability distribution. If
Pµ denotes the transition probability matrix of Mµ and X(k) denotes the set of size-k
subsets of [n] which are contained in some element of supp(µ), then for every
0 ≤ k ≤ d − 1, Pµ has at most |X(k)| ≤

(n
k
)

eigenvalues of value > 1 − k+1
d . In particular,

Mµ has spectral gap at least 1/d, and if τ ∈ supp(µ) and 0 < ϵ < 1, the total variation
mixing time of the Markov chain Mµ started at τ is at most tτ(ϵ) ≤ d log( 1

ϵµ(t) ).

Proof.
Let µ be a d-homogeneous strongly log-concave distribution, and let Pµ be the
transition probability matrix of the chain Mµ. By Theorem 2.9, it is enough to show that
λ∗(Pµ) ≤ 1 − 1

d . Observe that the chain Mµ is exactly the same as the chain P∨d for the
simplicial complex Xgµ defined above. Therefore, λ∗(Pµ) = λ∗(P∨d ) = λ∗(P∧d−1), where the
last equality follows by Lemma 3.1. Since gµ is strongly log-concave, by Proposition
4.1, Xgµ is a 0-local-spectral-expander. Therefore, by Theorem 3.3,
λ∗(P∧d−1) ≤ 1 − 1

(d−1)+1 = 1 − 1
d . □
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Roadmap

Figure 7: Roadmap

33 / 34



References

Anari, N., Liu, K., Gharan, S. O., Vinzant, C. (2019, June). Log-concave
polynomials II: High-dimensional walks and an FPRAS for counting bases of a
matroid. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing (pp. 1-16).

Mark Jerrum, Leslie Valiant, and Vijay Vazirani. “Random Generation of
Combinatorial Structures from a Uniform Distribution”. In: Theoretical Computer
Science 43 (1986), pp. 169–188.

Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave
polynomials, entropy, and a deterministic approximation algorithm for counting
bases of matroids”. In: FOCS. to appear. 2018.

Alexander Barvinok and Alex Samorodnitsky. “Random weighting, asymptotic
counting, and inverse isoperimetry”. In: Israel Journal of Mathematics 158.1 (Mar.
2007), pp. 159–191. issn: 1565-8511.

34 / 34


	Motivation
	Counting bases of Matroids

	Preliminaries
	Simplicial Complexes
	Log-concave polynomials
	Markov Chains and Random Walks

	Walks on Simplicial Complexes
	Upper and lower walks
	0-local-spectral-expanders
	*(Pd) = *(Pd-1)

	From log-concavity to Local Spectral Expanders
	Strong Log-Concavity implies 0-local-spectral-expander

	Putting everything together: Proof of Theorem 1.1
	References

