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Matroids

A matroid M is a pair M = (X, I) where X is a finite set and 7 € 2X so
that the following holds:

(i) Non-emptyness: 0 e I
(ii) Monotonicity: 1fYe T and ZC YthenZ e 1.

(iiiy Exchange property: If Y, Z € I and |Y| < |Z|, then for some
xeZ\Ywehave YU{x}e T

Definition (basis)
Let M = (X, I) be a matroid. A maximal independent setB e I is

called a basis of X. All basis elements have the same size, and their
size is called the rank of the matroid.

Example: The Acyclic subsets of a graph (forests) form a matroid,
called a graphic matroid.
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Bases exchange walk

Procedure:
1. Start with a basis element B.

2. Drop a random element i from B. Pick j uniformly at random from
{1,...,n}, and try adding it to B\{i}. Do it until we can.

3. Repeat step 2.

Figure 1: Graph C, corresponding to a rank 3 graphic matroid
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History

» 30 years ago, Mihail and Vazirani conjectured that the bases
exchange walk mixes in polynomial time.

» Polynomial mixing time corresponds to being able to count bases
in polynomial time (Approximate sampling and approximate
counting are equivalent in this scenario [2, JVV86]).

> Barvinok and Samorodnitsky designed a randomized algorithm
that gives a log(n)" approx. factor for a matroid with n elements
and rank r [4, BS07].

» In Log-concave polynoimals |, Gharan et al. give a deterministic
algorithm that returns an ¢" approximation factor.[3, AKOV18]

» In this paper, Gharan et al. give a randomized algorithm yielding
a 1 + e approximation factor in polynomial time.
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Main theorem

Theorem (1.1)

Let u : 2" — R,y be a d-homogeneous strongly log concave
probability distribution. If P, denotes the transition probability matrix
of M, and X(k) denotes the set of size-k subsets of [n] which are
contained in some element of supp(u), then forevery0 <k <d-1, P,
has at most |X(k)| < (}) eigenvalues of value > 1 - ’%1 In particular,
M, has spectral gap at least 1/d, and if t € supp(u) and 0 < e < 1, the
total variation mixing time of the Markov chain M, started at 7 is at

most t.(e) < d log(eyl(”[))'
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Simplicial Complexes

Definition
> A set X c 2" is called a simplicial complex if whenever ¢ € X

and T C o, we have t € X.

» Elements of X are called faces, and the dimension of a face
7 € X is defined as dim(t) = |1|.

» A face of dimension 1 is called a vertex, and a face of dimension
2 is called an edge.

» Define X(k) = { T € X | dim(7) = k} to be the collection of
degree-k faces of X.
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Examples

Any (undirected) graph G = (V, E) is an example of a simplicial
complex.

Figure 2: Example of a simplicial complex
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Examples (contd.)

Figure 3: Example of a simplicial complex
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Definitions contd.

> A simplicial complex X is pure if all maximal (w.r.t. inclusion) faces have
the same dimension.

» The link of aface 7 € X is defined by X, ={o\t|oce X, 1 Ca}.
Importantly, if X is pure of dimension d and t € X(k), then X is pure of
dimension d — k.

> Can equip a weight function w : X — R, to X by assigning a positive
weight to each face of X. Say a weight function w : X — IR, is balanced

if for any 7 € X,
w(t) = Z w(o)

oeX(k+1)
TCo

> Notice that we can equip X with a (balanced) weight function by
assigning its maximal faces weights and then assigning weights to the
rest of the faces inductively.
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Weights contd.

> Any (balanced) weight function on X induces a weighted graph
on the vertices of X as follows: the 1-skeleton of X is the
(weighted) graph G = (X(1), X(2), w) where w has been restricted
from X to X(2). In this case w(v) for v € X(1) is the weighted
degree of v.
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d-homogeneous polynomials

A polynomial p € R[xy, ..., x,] is d-homogeneous if
p(Ax1, ..., Axy) = A9p(xy,...,x,) for every A € R. Notice in this case
that,

n

Y xdip) = d - p()
k=1
Example. Consider p(x,y,z) = xyz* + x*yz. Then,

3
Z Xk Ikp(x) = (xyz2 + 2x2yz) + (xyz2 + xzyz) + (2xyz2 + xzyz)
k=1

= 4xyz® + 4x°yz
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Constructing Simplicial Complexes from Polynomials

From a d-homogeneous p € Ryo[x1, . .., x,] p(x) = Y.s csx°, can
construct a (weighted) simplicial complex X? by doing the following:
include a d-dimensional face S with weight w(S) = cs and include all
subsets of these maximal faces inductively.
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Visuals
This polynomial yields the above (weighted) simplex where each
tetrahedral face has weight 1:

p(X1,...,X7) = X1X2X3X4 + X3X5X6X7

Figure 4: Two Tetrahedrons Glued Together
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Roadmap

Chain of M,, = Chain of Py

Build M/‘ random walk

Transition matrix Pl‘

Construct generating
polynomial g,,

7 e

Figure 5: Roadmap
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Log-concave polynomial identities

Definition
A polynomial p € Rxo[x1, ..., x,] is log-concave if logp is concave,
equivalently if

p- (Vp)* = (Vp)(Vp)T
pZ

Vlogp =

is NSD. For convience, define p(x) = 0 to be log-concave.
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Log-concave properties contd.

» By Cauchy’s interlacing theorem, if p is log-concave then p - (V2p)
has at most one positive eigenvalue at any x € R,

» Since p has nonnegative coefficients, log-concavity is equivalent
to v2p < TRTL v’“) , S0 in this case V?p has at most 1 one positive
e|genvalue

> Turns out converse is true too: if p is a degree d-homogeneous
polynomial in R[x, ..., x,], and (V2p)(x) has at most one positive
eigenvalue for all x € R” , then p is log-concave.

>0’
Definition

A polynomial p € R[x;, ..., x,] is strongly log concave if for all k > 0
and all a € [n]*, we have 9%p is log-concave (i.e., all sequences of
partials are log-concave).
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Markov Chains and Random Walks

» A Markov Chain is a triple (Q, P, ©) where Q) denotes a finite state
space, P € R%“ is a transition probability matrix. That is,

P(,j) = Pij = P(Xpy1 =7 | Xy = 1)

It follows that the matrix is stochastic, such that P 1 = 1. Finally,
T E ]Rg0 denotes the stationary distribution of the chain (7P = r).

» The Markov Chain (Q, P, nt) is reversible if
1(7)P(7, 0) = m(0)P(0, 1)

for all 7,0 € Q.
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Markov Chains and Random Walks continued

» For any reversible Markov chain (Q, P, n), the largest eigenvalue
of P is 1 (Perron-Frébenius Theorem). We let
A*(P) = max{|A;|, |A4l}. The spectral gap of the Markov chain is
1 - A*(P).

Theorem (2.9, (DS))
For any reversible irreducible Markov chain (QQ, P, ), € > 0, and any
starting state

1 1
0= i 5 )
where

t(e) =min{t e N |||P(r,) - 7|, <€}
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Setting the stage

> Consider a pure d-dimensional complex X with a balanced
weight function w : X — R..

> Going to define a bipartite graph G, with one side X(k) and the
other side X(k + 1). Connect 7 € X(k) to 0 € X(k + 1) with an edge
of weight w(o) iff T € 0. Consider simple random walk on Gy:
choose a neighbor proportional to the weight of the edge
connecting the two vertices.
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Examples

> One on X(k) called P?, where given 1 € X(k) you take two steps
of the walk in Gy to transition to the next k-face w.r.t. the P,f
matrix.

> One on X(k + 1) called P}, |, where given o € X(k + 1) you take
%

two steps to transition to the next k + 1 face w.rt. P, ;.

X(k) X(k+1)

Figure 6: Bipartite graph Gy
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Values of the transition matrix

1 H —
o ift=1
— ut’ H
Pt T) = { el it U = X(k+1)
0, otherwise

(o) 73—
Lexw; wco T 0 =0
v _ (@) - _
P/ (0,0") = m if o N o’ = X(k)

0, otherwise

Note that both random walks are reversible with the same stationary
distribution:

w(T)P (1, v) = w(t)Py(v',7) and  w(o)P},,(0,0") = w(o")P,,,(c', 0)
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Proving A*(P}) = A*(P]_,)

Fact (Useful)

Let A € R™* and B € R™" be arbitrary matrices. Then, non-zero
eigenvalues of AB are equal to non-zero eigenvalues of BA with the
same multiplicity.

Lemma (3.1)

Forany1<k<d, P} and P/, are stochastic, self-adjoint w.r.t. the
w-induced inner product, PSD, and have the same (with multiplicity)
non-zero eigenvalues.
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Proving A*(P}) = A*(P]_,)

Proof.
Since Gy is bipartite, we may write the transition of the random walk
on Gy as
0 P
Pe=| 4+ k
P 0

Note that P,I and P,f are stochastic matrices. Then we see that

plPT
2 _
pk_[k k

1p
Pkpk]

It is easy to see Pf is PSD and stochastic. But now we note that

_ pipt _ pTpl )
P}ﬁ = PP, and P,jﬂ = PPy and we’re done. O
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Looking at P}

> P} is the transition probability matrix of the simple (1/2)-lazy
random walk on the weighted 1-skeleton of X where the weight
of each edge e € X(2) is w(e).

» Also consider the non-lazy variant of this random walk, given by
the transition matrix P} = 2(P} - 1/2)

» Similarly, for any face t € X(k), we define the upper random walk
on the faces of the link X,. Specifically, let P?,1 denote the
transition matrix of the upper walk, as above, on the
1-dimensional faces of X,, and Fﬁ;\,l = 2(P§,1 —1/2) be the
transition matrix for the non-lazy version.

Definition (Local Spectral Expanders, KO18)

For A > 0, a pure d-dimensional weighted complex (X, w) is a
A-local-spectral-expander if for every 0 < k < d — 1, and for every
T € X(k), we have 1o(P))) < A.
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Theorem 3.3

Theorem

Let (X, w) be a pure d-dimensional weighted 0-local spectral
expander and let0 < k < d. Then for all -1 <i <k, P;' has at most
IX(i)| < (}) eigenvalues of value > 1 - ,% where (by convention)
X(=1) =0 and (}) = 0. In particular, the second largest eigenvalue of
P} is at most 5.

Lemma

k 1
P} < gqP) + gyl forall0 <k <d.
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From log-concavity to Local Spectral Expanders

Theorem (Proposition 4.1)

Letp € R[xy,...,x,] be a multiaffine homogeneous polynomial with
nonnegative coefficients. If p is strongly log-concave, then (X*,w) is a
0-local-spectral-expander, where w(S) = cs for every maximal face
SeXr

> Letp: = (ILiec 9P

Lemma (4.2)
For any 0 <k <d, and any simplex T € X?(k), w(t) = (d — k)!p-(1).
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From log-concavity to Local Spectral Expanders

Lemma (Lemma 4.2)
Forany 0 <k <d, and any simplex © € XP(k), w(t) = (d — k)!p-(1).

Proof of Lemma.
Induction on d — k. If dim(7) = d, then p; = c;, and done. So suppose statement holds
for ¢ € XP(k + 1) and fix simplex t € X?(k). Then,

ww= Y. we)= Y, wruli)

oeXP (k+1) iex?
o ieXr(1)

Since d;p, = 0 for i ¢ X!(1), we have

W@ =@-k=1 Y, pogi@) = @-k=1Y dpe(1) = @ = K)ip(1)

iext (1) i=1

Where the last equality holds by Euler’s identity. m]
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Proof of Proposition 4.1

Since p is strongly log-concave, V2p(1) has at most one positive
eigenvalue. Let

~ 1 . _
V2p = ——— (diag(Vp) "' V?p(1)
Claim: V?p = P7),. Note that

wdl ) _ w(@u{ij)
we({i})  w(rU{i})

PAGj) =

While,

L eapa)
(VZP)(ZJ) T d-k- 1)(@ip)(1)

By lemma, equal.
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Proof contd.

Since p has nonnegative coefficients, the vector (Vp)(1) has
nonnegative entries which implies diag(Vp)(1) = 0. Fact: if B > 0 and
A has (at most) k positive eigenvalues then BA has at most k positive
eigenvalues. Since (V?p)(1) has at most 1 positive eigenvalue, V2p
has at most 1 positive eigenvalue by the fact. Thus, Vp = P, has at
most one positive eigenvalue, so AZ(PTAJ) <0. O
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Generating polynomial of u and M,

> Let u: 2" — Ry be a probability distribution. Assing a
multiaffine polynomial with variables x; ..., x, to y:

NOEDWION I E

Scln] ieS

> Say u is d-homogeneous if g, is d-homogeneous, and (strongly)
log-concave if g, is.

> We can define a random walk M, by the following: We take the
state space of M,, to be the support of i, namely
supp(u) = {S € [n]| u(S) # 0}. For = € supp(u), first we drop an
element i € 7, chosen uniformly at random from 7. Then, among
all sets 0 2 7\ {i} in the support of u, we choose one with
probability proportional to (o).
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Proof of Theorem 1.1

Theorem (1.1)

Let: 21 — Ry be a d-homogeneous strongly log concave probability distribution. If
P, denotes the transition probability matrix of M, and X(k) denotes the set of size-k
subsets of [n] which are contained in some element of supp(u), then for every
0<k<d-1,P, has at most |X(k)| < (}) eigenvalues of value > 1 — ";—1. In particular,
M, has spectral gap at least 1/d, and if t € supp(u) and 0 < € < 1, the total variation
mixing time of the Markov chain M,, started at 7 is at most t:(e) < d 10g($)-

Proof.

Let i be a d-homogeneous strongly log-concave distribution, and let P, be the
transition probability matrix of the chain M,,. By Theorem 2.9, it is enough to show that
A(Py) <1- % Observe that the chain M,, is exactly the same as the chain P; for the
simplicial complex X$# defined above. Therefore, A*(P,) = A*(P}) = A*(P}_,), where the
last equality follows by Lemma 3.1. Since g, is strongly log-concave, by Proposition
4.1, X8 is a 0-local-spectral-expander. Therefore, by Theorem 3.3,
A*(Pg_l)g—ﬁ:l—%. O
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