
Transformer Based Pix2Pix

Alex Albors Juez
University of Washington

aalbors
aalbors@uw.edu

Logan Garwood
University of Washington

lgarwo
lgarwo@uw.edu

Abstract

Generative Adversarial Networks (GANs) have become
one of the best model frameworks in deep learning for
the task of image generation. They have been shown to
learn to generate life-like results in diverse creative do-
mains. Pix2Pix is an image generation variant using GANs
in which the model translates the style of an input image.
A traditional Pix2Pix GAN usually consists of two convo-
lutional neural networks, the generator and discriminator,
playing a game in which they try to beat each other. The
generator’s job is to generate a new image conditioned on
its input image - typically done through the classic U-Net
architecture. However, since the advent of the transformer,
the deep learning community has found attention to be “all
you need”. In this paper we introduce a new generator ar-
chitecture that incorporates the use of transformers instead
of a traditional U-Net. The main idea being that transform-
ers excel in translating language sequences, so perhaps they
will be well suited for Pix2Pix image translation. We iter-
ate on our baseline to explore the relationship between net-
work depth and residual connections on the success of the
GAN. We compare these model designs to a convolutional
baseline to measure success using a variety of metrics. A
success by transformer GANs in Pix2Pix could reinvigo-
rate the lately diminishing appeal of generative adversar-
ial networks in image generation due to the advent of dif-
fusion models. Additionally, we believe that the results of
our model could suggest an opportunity to modernize other
deep learning models with the use of transformers.

1. Introduction
Generative adversarial networks (GANs) have been used

to generate authentic looking images across a variety of
domains. They take advantage of an adversarial game be-
tween two agents, a discriminator D and a generator G (in
practice these are Neural Networks). The generator pro-
duces synthetic images that are meant to simulate a real
dataset while the discriminator tries to determine if the pro-

duced image is real or created. Through this game, both
agents improve until eventually the generator produces im-
ages that are so believable, the discriminator cannot tell
the difference between the dataset and the output. Due to
the GAN’s ability to learn a loss function that adapts to
the data, they have been successful in a multitude of tasks
that traditionally would require different kinds of loss func-
tions. One of these has been image-to-image translation,
which seeks to translate an input image from one domain
to another domain given input-output image pairs as train-
ing data. Tasks within this domain include image coloriza-
tion, image inpainting, in which we complete missing parts
of a given image, and image segmentation, which anno-
tates individual pixels as belonging to a specific class or
instance. With regards to image segmentation, given an in-
put image, GANs output segmentation masks representing
pixel-by-pixel boundaries and shapes of each class, which
correspond to different objects or regions in the input image.
We present Pix2Trans2Pix2GANs, an improved version of
the popular Pix2Pix GAN used for paired Image-to-Image
translation tasks [5]. We introduce our new architecture
approach to Pix2Pix GANs which replace the classic U-
net convolutional encoder-decoder with a modified, trans-
former based generator instead. Transformers have swept
the world of deep learning and are being implemented in a
variety of mediums and model types. We are hoping that a
transformer based generator will be an upgrade from a con-
volutional generator and will produce higher quality image
translations.

2. Related Work
The field of image to image generation has evolved

rapidly in the past years due to the advent of GANs and their
ability to implement different losses through their discrim-
inators, which were first introduced by Goodfellow et al
[3]. Although they showed a remarkable ability to generate
high-quality images, they were not yet ready to tackle im-
age translation due to their unconditional nature: unpaired
training data and the nature of the GAN architecture itself
did not allow for the generator to learn to produce an image

1



given a certain condition. In the case of image segmenta-
tion, this would correspond to the real life image we’d wish
to segment. This issue was quickly resolved with the intro-
duction of conditional GANs, proposed by Mirza et al [7]
and quickly adopted in the image translation community by
Isola et al’s Pix2Pix GAN [5], which accomplished remark-
able results by introducing a U-Net with residual connec-
tions as their generator architecture and focusing on look-
ing at local, high-frequency structures in their discrimina-
tor. Shortly after, Wang et al [11] introduced upgrades to
Pix2Pix through their model Pix2PixHD by including an
additional generator, letting one focus on the generation of
coarse features, and another on the fine details. Further-
more, due to the improved generator, they also augmented
the discriminator’s receptive field by adding two other dis-
criminators, each focusing on different image scales. Such
architecture augmentations however, considerably increase
the model complexity and training difficulty. Since the in-
troduction of Transformers by Vaswani et al [10], atten-
tion layers have become ubiquitous in the deep learning
community. They have been successfully implemented in
Vanilla unconditional GANs [6], where the authors take a
pure transformer-based approach completely free of convo-
lutional layers. They also introduced multiple discrimina-
tors to simultaneously capture semantic contexts and low-
level textures. Transformer GANs have also been explored
for high-resolution image generation tasks, such as [12],
but their computationally expensive training remains a nui-
sance.

3. Methods
3.1. Pix2Pix GAN

Pix2Pix uses conditonal generative adversarial networks
which is a variant of the original generative adversarial net-
work. Conditional GANS learn a mapping from some ob-
served image x to a generated image. The goal of the gener-
ator is to fool the discriminator by producing output images
that appear real. The discriminator has access to a real im-
age x and a real or fake image and learns to produce the
probability that it is real given x. Therefore if (x, y) is a
pair of training data representing a real input and target im-
age, then the objective function of a conditional GAN can
be expressed as

V (G,D) = Ex,y[logD(x, y)] + Ex[log(1−D(x,G(x))]

where G tries to minimize this function and D tries to max-
imize it [5]. Observe that the first term is large when the
discriminator correctly predicts that a real image is real and
the second term is large when the discriminator correctly
identifies a generated image as fake.

In general, the parameters of a generator and discrimi-
nator can be arbitrary but in practice they are most often

deep convolutional neural networks. In such a convolu-
tional framework, the generator downsamples the input im-
age through a series of convolutions into latent space and
then applies transpose convolutions out of latent space back
to pixel space, learning along the way the desired Pix2Pix
translation. This downsampling and upsampling architec-
ture is referred to as U-Net and is a common encoder de-
coder method. Then, the discriminator convolves the real
input and real or fake output down and returns the probabil-
ity that the second image is from the dataset as opposed to
fabricated by the generator.

We follow the same overall training workflow as Persson
[9] but make our own transformer-based generator instead
of the U-Net. In subsequent sections we will explain the
architecture in more depth.

3.2. Dataset

After surveying a variety of datasets, we decide to train
our models on Cityscapes [2], a large-scale benchmark con-
taining over 5000 street scene images with fine pixel-level
annotations on over 50 different cities and a total of 30 dif-
ferent classes. After thorough training on datasets for differ-
ent image translation tasks, we’ve found the task of image
segmentation on Cityscapes to be the most appealing for our
purposes: the target image simplicity allows the generators
to remain competitive throughout training. For comparison,
we tested our models for image inpainting on the Animal
Faces Dataset [1] but saw the discriminator outpower the
generator, and eventually leading it to mode collapse. We
address this challenge in the discussion section.

3.2.1 Data Augmentation Techniques

To enrich the variety of the dataset, we employ a variety
of image augmentations. We first ensure color chanels are
represented in the [0, 1] range. With regards to the input im-
ages, we perform horizontal flips with probability 0.5, and
apply Color Jittering with probability 0.2. We also normal-
ize across all color channels so that images have pixel mean
(0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5) as well
(one coordinate per channel). We employ Python’s Albu-
mentations library to do so.

3.3. Baseline

Our baseline GAN generator came from the original
Pix2Pix paper and was implemented by Aladdin Persson
on GitHub [9]. In fact, we use parts of Persson’s general
GAN pipeline throughout the project. Their GitHub repos-
itory came complete with code that saved us a lot of time
by implementing methods that were not at the focus of the
project but are still necessary for success such as config-
uring the GAN settings, processing the dataset, and saving
results.

2



The baseline generator is a deep convolutional neural
network that follows the traditional U-net architecture as
seen in Figure 2. It consists of six layers of convolutions,
Batch norm, ReLU, and dropout. Then a bottleneck convo-
lution with just ReLU. From the bottleneck they up-sample
via 7 layers of transpose convolutions and again using Batch
norm ReLU and dropout on the way up. Finally, the last
transpose convolution uses three channels to transition into
RGB space and then a hyperbolic tangent activation func-
tion in the end.

Figure 2. The standard U-Net encoder-decoder with long range
residual connections.

The baseline model also takes advantage of residual con-
nections between encoding convolutional layers and decod-
ing transpositional layers. We will discuss the importance
of these residual connections more in Section 3.5.

This model performed admirably out of the box and we
will use the results from this model to test our hypothesis
that a transformer based generator can outperform the tradi-
tional U-net convolutional generator.

3.4. New Architecture 1

Our first transformer based architecture operates within
the same GAN training workflow as implemented by Pers-
son although we created our own generator from scratch.
Generally speaking, this generator replaces the convolu-
tional encoding layers of the U-net with transformers in-
stead [Figure 1]. The architecture takes some inspiration
from Jiang et al [6].

First, the generator partitions the 256× 256 images into
1024 patches, each of size 8×8 pixels [4]. Then the patches
are encoded into a sequence in two ways. Each patch is
projected out of pixel patch space by a fully connected layer
from R192 into R64 and the result is added to the patch’s
positional embedding.

The encoded patches are then sent through four trans-
former blocks each consisting of a multi-headed attention
layer, dropout, layer norm, a two layer perceptron R64 →
R32 → R64 and then another dropout and layer norm. The
transformers use eight attention heads and a dropout rate of
0.1

From this latent space we reshape the transformed se-
quence back into the patchified shape of (N, 1024, 8, 8),
where N is the batch size, in order to prepare to construct
an image from the transformed information. We then up-
sample back to a tensor of the same shape as the input which
results in the generated image. The upsampling is done by
five copies of transpose convolution, batchnorm, and leaky
ReLU. Each transpose convolution uses a kernel size of 5 a
stride of 2, zero-padding 2, and an output padding of 1. The
number of output channels of a single transpose convolution
is set to half of the number of channels from the prior block.
All of this is to ensure that the depth of the encoded tensor
is halved with each convolution while the height and width
are doubled until we reach a size of (N, 32, 256, 256). Then
a final linear layer is applied to project down to three chan-
nels representing the RGB values of the generated image.

In addition, similar to most Pix2Pix GANs we utilize
residual connections during upsampling. However, the
residual connections of this first architecture only estab-
lishes connections between directly adjacent transpose con-
volutional blocks during decoding. Note that the original
Pix2Pix paper [5] uses long skip connections in their U-Net
to allow information to bypass the encoder-decoder bottle-
neck. This first architecture does not do that because we
have removed the convolutional encoding layers in place of
transformer blocks, meaning the size of our encoded images
does not approach a “bottleneck” in the typical sense of the

Figure 1. First architecture

3



word. Our other architectures will explore workarounds to
this situation.

3.5. New Architecture 2

As Isola et al. [5] mention in the original Pix2Pix paper,
image translation is a task in which residual connections
across a U-Net makes sound sense. This is because we want
the generated image to share a lot of broad structural simi-
larities to the input image. The underlying hypothesis is that
if the generator decoder can reference information from the
encoding process, then the output images will be more sim-
ilar to the input image. This is why they implement their
generator with long range skip connections which transmits
information from encoding convolutions across the bottle-
neck to the decoding transpose convolutions on the other
side of the U-Net.

The problem with implementing this in our transformer
based GAN is that the encoder-decoder does not follow a
U-Net shape and does not even taper to a bottleneck in the
same way that traditional U-Nets do. Recall that in the first
transformer architecture, we patchify the image and embed
the patches into a sequence which are fed through trans-
former layers. However the dimensions of the embedded
patches do not change while being transformed. Instead,
we take the transformed tensor and we reshape it so that
each transformed patch is stacked to create a tensor of shape
(N, 1024, 8, 8). Note that we manually reshape instead of
convolving down to this shape. So where do the residual
connections come from? We chose to feed data from the
first several transformer layers’ output into the decoding
transposition convolutional layers [Figure 3].

To do this, the input of the first five transformers are fed
into the five transpose convolution layers during image con-
struction. The rationale is identical to that of the U-Net
although now instead of a connection between symmetric
convolutional layers and transpose convolutional layers as
in the U-Net, we have an asymmetric connection between
transformer layers and the transpose convolutional layers.

We also chose to deepen the network by adding more

transformer layers to increase the effect of our architecture
change compared to the baseline. Due to the residual con-
nection layout described above, we must have at least five
transformer layers; we chose to use ten.

3.6. New Architecture 3

While we found that the preliminary results of architec-
ture 2 signified improvements over architecture 1, it still fell
short of the baseline implemented by Persson. To try and
match this performance, we decided to construct architec-
ture 3.

While transformer GANs on sequences of image patches
have shown to perform well in the past for vanilla GANs
[6], we wondered what aspects of our new application to
Pix2Pix conditional GANs would translate poorly and thus
need modification. In architecture 1 and 2 we adopt a simi-
lar patch embedding framework as Jiang et al [6]. As men-
tioned in the description of architecture 1, each patch of
pixels is projected through a fully connected layer into R64

and also positionally embedded. However, we realized that
a fully connected layer from pixel space to embedding space
could struggle to preserve the local spatial information of
the pixels. This is why we decided to borrow from the typ-
ical U-Net GAN and introduce convolutions into our third
architecture.

Architecture 3 is a copy of architecture 2 with an updated
patchification process. Now instead of the patch embed-
ding function projecting the patches from pixel space into
R64, it will project the patches from some spatially aware
latent space into the same projection dimension. To do this,
we implement a new patchify function which first, parti-
tions the image into a sequence of 1024 patches each with
size 8 × 8 pixels. Then, unlike in previous architectures,
we apply three convolutional filters with ReLU in-between.
The convolutions have a kernel size of 3 with a stride and
padding of 1 so that at each step the patch has size 8 × 8.
The kernels have depth 64, 128, and 256. We then apply
adaptive average pooling on each patch giving us a single
value for each filter which results in a 256 dimensional vec-

Figure 3. Second architecture

4



Input Target Baseline Arch1 Arch2 Arch3

Table 1. Generated images on validation data. Target and input column represent validation data pairs. Each model output is shown in the
following columns. The colors of each image correspond to types of objects in the Cityscapes dataset.

tor for each patch. We then project this vector down into 64
dimensional space and feed it through the rest of the patch
embedding which is identical to architecture 2 (more linear
layers and then positional encoding).

4. Experiments
4.1. Metrics and Training

Even though we can evaluate the models subjectively
by assessing the realism of the results, we employ a more
objective evaluation metric through the use of FID scores,
which quantify the distance between the model’s generated
images and a reference test dataset. Specifically, the Fréchet
Inception Distance measures how similar the distribution of
the real, target images is to the distribution of the generated
images. To do so, we run our trained generator through a
validation dataset to get generated images. Then, an Incep-
tionV3 model converts these to lower-dimensional features,
along with the target images. Finally, we fit a multivariate
gaussian with mean µ and covariance Σ on each set of fea-
tures. Namely, N (µg,Σg) is the best fit Gaussian to the fea-

tures corresponding to the generated images, and N (µt,Σt)
corresponds to the distribution representing the features of
the target images. Then, the FID score is

FID = ∥µg − µt∥2 +Trace
(
Σt +Σg − 2(ΣgΣt)

1/2
)

FID scores have become the standard for evaluating GAN
performance, and tend to produce more consistent results
than other popular metrics, such as Inception scores. Both
are thoroughly covered by Choi et al [1]. Moreover, we
will also keep track of the L1, generator, and discrimina-
tor losses to compare the training efficiency on each model.
Due to the increased complexity of the proposed models,
particularly Pix2Trans2Pix2GAN v3, we expect them to
take longer to produce satisfactory results, but believe their
performance will be superior in the long term. We train
each model for 500 epochs, since GAN training is expen-
sive and highly unstable. We use the Adam optimizer for
both the discriminator and generator updates, and use batch
sizes of 16 images each. The total loss is a weighted sum
between the classical conditional GAN loss 3.1 plus the L1

5



loss between the generated and target image, with weights
1 and 100, respectively. As hyper-parameters, we have ex-
perimented with others and have found those to work best.

Figure 4. Generator losses throughout training epochs

5. Discussion

5.1. Baseline Comparison

Through our experiments, we confirmed our hypothe-
sis that a transformer based generator can outperform the
standard convolutional U-Net generator. While the base-
line generator achieved a minimum combined reconstruc-
tion and adversarial loss of about 7.5 in 500 training epochs,
each of our transformer based architectures achieved half of
that or less [Table 2]. Also it can be seen in the training
losses [Figure 5] that the baseline model’s reconstruction
loss plateaued earlier and higher than the transformer re-
construction loss suggesting that the attention of the trans-
former architecture allows it to find more room for opti-
mization better than the U-Net.

The same figure also highlights an interesting finding
which is that in the first 100 epochs or so, the convolutional
model experiences relatively lower L1 losses than the other
architectures. We will discuss this more later but for now
it makes intuitive sense that the more spatially-aware con-
volutional model would exhibit short term success over a
more sophisticated transformer model dealing with patch
sequences.

Another interesting difference between the baseline and
transformer generators during training is that the adversar-
ial losses of the transformer models are much more stable
than that of the baseline [Figure 4]. In general, adversar-
ial loss can be difficult to interpret in GANs because the
discriminator and generator are both learning at the same
time so any improvements in one will come at the cost of
the other. This results in the losses oscillating from epoch
to epoch. However, as the discriminator and generator both
learn to perform their respective duties better, their adver-
sarial losses should stabilize and converge to some positive

value. This value will correspond to the loss in the ideal
situation when the discriminator predicts every real image
correctly and will correctly classify a generated image only
half of the time. The stability of the adversarial loss in our
transformer based generators suggests that the variance in
the “believability” of a generated image is less than in the
convolutional generator images. This means that our ar-
chitectures will more consistently generate similar quality
images while the baseline model is more likely to once in
awhile predict extremely poor images (notice the spikes in
the baseline adversarial losses of [Figure 5].

Beyond training, the transformer based generators also
scored much lower FID scores on the validation set than
the baseline [Table 2]. The validation set consisted of 500
randomly selected images from the Cityscapes dataset and
the models did not have access to this data while training.
The FID score (Fréchet Inception Distance) compares the
distribution of the set of generated images for each model
to the distribution of the target images. A lower FID score
means that the distribution of the generation image set more
closely resembles that of the ground truth set. All of the
models in this study achieved high FID scores when com-
pared to typical GAN literature but we believe this is due
to the limited training time and budget combined with the
sensitivity of GAN training to hyper-parameters. However,
because the FID scores were calculated for each model af-
ter a common training period, we choose to focus on the
relative difference in the FID scores between the four archi-
tectures.

Finally, it is worth noting that the baseline model has
about 54 million parameters while the transformer archi-
tectures all have less than 30 million. This means that
not only did our transformer based architectures show im-
proved metrics in loss, FID, and stability but it also did so
while using half the number of learnable parameters. This is
likely because the U-Net encoder-decoder has several con-

Figure 5. L1 losses throughout training epochs

6



Model FID Min Loss Variance Parameters (M) Train time (h)

Baseline 212.24 7.57 3.63 54.4 2.2
Arch1 130.39 3.30 0.91 23.9 3.5
Arch2 124.76 3.40 0.63 28.5 3.2
Arch3 134.67 3.90 0.64 28.9 6.1

Table 2. Metrics and training statistics

volutional filters which contain many more parameters per
layer than our respective transformer encoders. Recall that
the baseline generator encoder used 6 convolutional layers
while architecture 2 and 3 each used 10 transformer lay-
ers. Therefore the bulk of the baseline parameters come
from the fact that convolutional weights store more raw pa-
rameters than transformer layers. However, the number of
parameters may not be the best way to measure the relative
complexity of the architectures because the training time
of our models were much longer. This is likely due to the
difficulty in calculating the gradient in a transformer based
architecture as opposed to a mathematically simpler convo-
lutional network.

5.2. Architecture Analysis

Now that we have established that transformer based
generators can outperform the baseline, lets compare the
three transformer architectures and evaluate whether our de-
sign iterations showed the intended improvements.

In FID score, minimum loss, variance, and number of
parameters, architectures 1, 2, and 3 show essentially the
same results. According to our statistics of Table 2, the
model quality is reversed from what we expected and our
intended improvements did the opposite. The numbers are
so similar though that this could be a result of the particular
validation data sample. However the point remains that our
iterations on architecture 1 (namely: deepening the model,
adding long residual connections, and convolving patches)
did not significantly improve the model performance. This
is also verified by the similarity in quality of generated im-
ages from Table 1. Not only was the performance roughly
the same, but the training time for architecture 3 took much
longer than any other model.

In summary, the difference between transformer based
generators and the standard convolutional generator is cer-
tainly noticeable, but there is no noticeable difference in
quality between the three architectures we proposed.

5.3. Generation on Validation

Beyond the numeric ways to evaluate the performance
of the various models, it is also important to explore the
qualitative results as well. To this extent, we will consider
the generated images of each model on the validation set
of Cityscapes images with our own eyes. Table 1 shows

a small sample of the validation set that represents some
of the key aspects found throughout the dataset. Each in-
put image was fed into each generator and the outputs are
shown in the table. Note that although we only show four
images in the table, the patterns we identified (and will de-
scribe below) are based on peering through hundreds of val-
idation examples.

Initially while training, we thought that the baseline
would outperform transformer based models because the
convolutional model tended to produce better looking im-
ages earlier in training than the transformer models. This
is seen in the lower L1 loss by the baseline in the first sev-
eral epochs (Figure 5). However, the quality in generated
images by the transformer models soon caught up.

We noticed that in the Cityscapes dataset, there are cer-
tain types of input images that are more difficult to translate.
For example, every model seemed to generate more realis-
tic images when the input contained many parked cars on
the sides of the street or when the street contained very few
cars. More difficult images are obviously those with extra-
neous features that are less frequent in the training data such
as vans, cyclists, or pedestrians.

Although all the models perform best on the “easier” im-
ages, it is actually the baseline that seems to give the su-
perior quality image translations here instead of the trans-
former generators. All of the other architectures show very
similar quality across their generation on simple images al-
though we noticed architecture 2 and 3 give slightly bet-
ter reconstructions of the input image than architecture 1.
A significant issue we’ve encountered with the transformer
generators on the majority of the images, even in the simple
ones with open roads, is the fact it hallucinates cars often.
In most of the early to middle stage epochs of training, the
transformer based architectures will generate cars on one or
both sides of the street where there are none in the input
image. Even in late stage epoch generations (like the ones
shown in the table), there are many blue blotches symbol-
izing parts of cars. The explanation for this is simple, the
training data has many images of busy streets with parked
cars lining the sidewalk and so when the generator is learn-
ing to fool the discriminator, it will find that the image is re-
alistic looking if it has many cars on the side. After longer
training times, this hallucination effect is somewhat miti-
gated by the discriminator improving and using its ability

7



to condition on the input as well as the L1 loss becoming
more of a factor as the adversarial loss decreases.

However, there is room for improvement on the outliers
in the dataset distribution, which corresponds to the more
complex images. This is largely due to the notorious prob-
lem that GANs tend to suffer from mode collapse. How-
ever, we noticed that the baseline model performed worse
compared to the transformer based models on such images.
The resultant output of the baseline model is characterized
by widespread smudging, with scarce discernible shapes.
This matches what we observe in the adversarial loss sta-
bility (Figure 4) of the baseline mentioned above. The
transformer based models also encounter some difficulties,
but they tend to produce clearer looking shapes (cars, side-
walks, etc.) with more defined outlines. They do however
tend to hallucinate cars that don’t exist even more so than
in the simple images. Also, the extraneous feature such as a
van or pedestrians will often not be shown in the generated
output. The model chooses to ignore them and attempts to
generate the rest of the image instead.

In broad terms, the baseline model demonstrates a capac-
ity to generate highly convincing image translations for cer-
tain inputs. However, its efficacy diminishes significantly
when confronted with outlier images. At the same time, the
images produced by transformer-based architectures con-
sistently exhibit mediocrity. Consequently, the superior-
ity of transformer-based Generative Adversarial Networks
(GANs) over convolutional GANs in the context of image
translation is not evident.

5.4. Further Research

The success of our transformer based model over the
convolutional baseline in the task of image translation
serves as further evidence that transformers and attention
can and should be used to update existing architectures in
many areas of deep learning. However, the lackluster qual-
ity of generated images shows that there is still a lot of work
to be done.

The images generated by all of these models are far from
state of the art. Ideally we would like to train each model
for much longer and experiment with more hyper-parameter
combinations involving the relative weighting between the
reconstruction and adversarial losses, the embedding di-
mension of our latent vectors, and the patch size.

We also would have liked to implement some GAN train-
ing tricks that we have since learned since completing the
training. Some examples include training the discrimina-
tor with stochastic gradient descent while the generator is
still trained on Adam that way the discriminator will hope-
fully improve slower than the generator giving the genera-
tor more time to experiment with different generations and
hopefully mitigate mode collapse. Another similar idea
would be to experiment training with dual discriminators

and dual generators to improve robustness.
Finally, we initially began looking into transformer

based architectures because we wanted to try and follow
Sora’s recent example of replacing a U-net architecture with
a transformer related architecture. However, Sora uses a dif-
fusion transformer based on the paper by Peebles and Xie
[8]. We would have liked to implement a diffusion trans-
former architecture inside of a GAN. Perhaps this could be
a further iteration of this project and the results can be com-
pared to the four generators discussed in this paper.

5.5. Conclusion

In this study we presented three different architectures to
improve the popular Pix2Pix conditional generative adver-
sarial network. We hypothesized that a transformer based
architecture would be well suited for a conditional Pix2Pix
generator because the input image can be interpreted as a se-
quence on which a transformer can use attention to produce
a generated translation. We iterated on our own model de-
signs by identifying weaknesses and developing new ideas
to address those weaknesses. Although the generated im-
ages are not quite state of the art, we provided empirical
evidence that the transformer based generators can outper-
form the baseline convolutional generator with the training
resources available to us.

Furthermore, we both learned an immense amount about
deep learning content and project collaboration. We faced
many frustrations such as changing ideas after the first pro-
posal and learning that GANs are extremely tricky to train.
In hindsight there are many things we would have done dif-
ferently from the start. However, these setbacks ultimately
taught us some of the most valuable lessons. We are not
so unlike these models in a way. Through an oscillatory
sequence of wins and losses, we learned to minimize the
losses and adapt to meet new challenges.

References
[1] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 2, 5

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative Adversarial Networks, June
2014. 1

[4] Qi Guo, Sheng Gao, Xiao Zhang, Yafeng Yin, and Chao
Zhang. Patch-based image inpainting via two-stage low

8



rank approximation. IEEE Transactions on Visualization and
Computer Graphics, 24(6):2023–2036, 2018. 3

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks, 2018. 1, 2, 3, 4

[6] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two pure transformers can make one strong gan, and that can
scale up, 2021. 2, 3, 4

[7] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets, 2014. 2

[8] William Peebles and Saining Xie. Scalable diffusion models
with transformers, 2023. 8

[9] Aladdin Persson. Machine learning with python. https:
/ / github . com / aladdinpersson / Machine -
Learning - Collection / tree / master / ML /
Pytorch/GANs/Pix2Pix, 2023. Accessed: January 15,
2024. 2

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023. 2

[11] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans,
2018. 2

[12] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong
Chen, Fang Wen, Yong Wang, and Baining Guo. Styleswin:
Transformer-based gan for high-resolution image genera-
tion, 2022. 2

9

https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix
https://github.com/aladdinpersson/Machine-Learning-Collection/tree/master/ML/Pytorch/GANs/Pix2Pix

	. Introduction
	. Related Work
	. Methods
	. Pix2Pix GAN
	. Dataset
	Data Augmentation Techniques

	. Baseline
	. New Architecture 1
	. New Architecture 2
	. New Architecture 3

	. Experiments
	. Metrics and Training

	. Discussion
	. Baseline Comparison
	. Architecture Analysis
	. Generation on Validation
	. Further Research
	. Conclusion


